Mechanical engineering is the discipline that applies the principles of engineering, physics, and materials science for the design, analysis, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the design, production, and operation of machinery. It is one of the oldest and broadest of the engineering disciplines.
Mechanical engineers use these core principles along with tools like computer-aided design, and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, robotics and medical devices. Mechanical engineering emerged as a field during the Industrial Revolution in Europe in the 18th century; however, its development can be traced back several thousand years around the world.
Frontiers of Research
Micron-scale mechanical components such as springs, gears, fluidic and heat transfer devices are fabricated from a variety of substrate materials such as silicon, glass and polymers like SU8. Examples of MEMS components are the accelerometers that are used as car airbag sensors, modern cell phones, gyroscopes for precise positioning and microfluidic devices used in biomedical applications.
Friction stir welding, a new type of welding, was discovered in 1991 by The Welding Institute (TWI). The innovative steady state (non-fusion) welding technique joins materials previously un-weldable, including several aluminum alloys. It plays an important role in the future construction of airplanes, potentially replacing rivets. Current uses of this technology to date include welding the seams of the aluminum main Space Shuttle external tank, Orion Crew Vehicle test article, Boeing Delta II and Delta IV Expendable Launch Vehicles.
Composites or composite materials are a combination of materials which provide different physical characteristics than either material separately. Composite material research within mechanical engineering typically focuses on designing (and, subsequently, finding applications for) stronger or more rigid materials while attempting to reduce weight, susceptibility to corrosion, and other undesirable factors.